MATH 1450 EXAM1

Answer the following questions correctly (no decimal answer!) for a full credit.

1. (1pt) Find the *points* on the graph of $f(t) = t^3 - 12t + 4$ where the tangent line is horizontal.

2. (1pt) Find an equation of the tangent line to the curve $y = x^3 - x$, at P(-1, 1).

3. (1pt) The position of a body at time t seconds is $s(t) = t^3 - 6t^2 + 9t$. Find the body's acceleration each time the velocity is zero.

4. (4pts) Find the **derivative** of each function with respect to the variable for which it is defined: do **not** attempt to simplify your final answer.

i)
$$f(t) = \frac{1-t}{1+t}$$

ii) $g(r) = (r^2 - r)^3$
iii) $k(x) = tan(x) + x^{1/4}$
iv) $q(x) = (x+2)(1-x)$
v) $g(z) = cos^{-1}(z-3)$
vi) $y = 2^x + \log_3(x)$

5. (2.5pts) Let $f(x) = x^2$ and $g(x) = \sqrt{x}$, find the following (leave your answers in a *simplified* form):

(a) f(g(x)) (b) g(f(x)) (c) g'(x) (d) $\frac{1}{(f'(g(x)))}$ (e) $(f \circ g)'$.

6. (1pt) If $h(x) = \sin x$, find in a reduced fraction form, $\frac{d}{dx}h^{-1}\Big|_{x=5/7}$

7. (1pt) If $h(x) = \ln(x^2 - 3)$, find the exact value (no decimal) of the slope of the line normal to h at the point A(2, 0).

- 8. (3pts) For each of the following equations, find y'. Leave each answer in a simplified rational expression form.
 - (a) $x^3 2xy + y^2 = 0.$
 - (b) y = sin(xy).
 - (c) $\ln x + \ln y = 7x 7y$.